Camp Co-Create

The result of my process throughout this project is a framework for participatory design, that can be filled in by the camp users to easily and intuitively create different kinds of spaces.

Through investigating quite varying themes and processes throughout these past months, I feel like in the end I ended up coming back to the idea of participation that I was initially interested in at the beginning of the semester.

A final addition that might be interesting to add to the project for my portfolio (or at least to think about) is what different tool kits could be given to the campers, and what effects the tools handed to the campers could have on the building process and configuration.

Sketch to System in Three Scales

I have spent the past couple of weeks turning the sketches from last pinup into a buildable system.

First, I have roughly sketched out how to build the structure. The basic building system in my summer camp will consist of beams that are pre-cut to have holes, kerfing and a ”zip” on each end, as well as heavier cast bases where the zipped beams can interlock and have their shape defined. The beams are transported unbent to the site, and will then one by one be bent to fit their corresponding bases.

Zooming out a little bit, I have also looked at what kinds of spaces can be created using two curving beams with a third material, such as rope, fastened into the system. To narrow the study down I have focused only on parallel and perpendicular beams, but these different types of relations can be varied further by placing the beams at another angle to each other.

In order to investigate the spaces a bit more closely I also built 1:50 scale models of three of the spatial examples.

Lastly, I have begun to look at how to configure these different types of spaces into a larger campsite, using different kinds of spaces and different scales to create a varied structure for the camp visitors. 

Before the final presentation, I will also investigate how another ”shell” layer could be added on top of the tertiary layer of the structure. I’ll also work through the final configuration of the camp, to create a varied structure with some areas that are more designed by me (by adding a tertiary layer that instead of rope consists of a rigid material) and some areas where the camp users can design their own spaces using rope to ”weave” in the structure.

Material > Sketch > System

This part of the project started out with a small investigation into the bending capabilities of kerfed wooden strips.

After trying to laser cut a prototype of a combined zip-kerf system (and failing because of the laser cutter being too imprecise), I decided that I would instead continue the investigation by making quick models and sketches based on the behavior of the kerfed wood.

Drawing inspiration from the previous part of the project, where the structure was literally based on the movement of the swarming agents, I tried to make sketches that combined the expression of frozen movement with the properties of the kerfed wood.

Up until this point, this project has mainly focused on the wooden ”backbone” of the structure, with one element, wood. However, my aim is to add another element to the structure.

In the beginning of the semester, I was interested in exploring participatory design. During this recent phase of the project, I have started to think about my summer camp as a scout camp, which could include elements of DIY building, problem-solving and learning by doing. My thought right now is that the second part of the structure will be filled in by the camp-goers, and that the wooden structure can serve as a canvas or backbone for the creativity of the users.

From now on, I will focus on exploring in detail what types of spaces can be created with these systems, as well as how these spaces can be combined on a larger scale.

Zip, Kerf, Interlock – Wood Bending Tests

After working with swarming agents that produced linear curves in the first part of this project, I decided that I wanted to continue exploring linear shapes further in the fabrication part of the process.

One of the first things I tried during the week was make simplified interpretations of some of the shapes produced during the previous part of the project using strips of paper. However, since the thickness of paper is negligible, it has properties and a flexibility that no full-scale material can emulate. This led me to choose a more specific material to have in mind when continuing the testing. I chose to research wood, and different methods that can be used to make wood flexible.

In summary, I have explored three methods of working with wood to produce flexible, three-dimensional shapes. These methods are zipping (based on a concept by Schindlersalmerón), kerfing and interlocking.

Using the laser cutter and 4 mm thick poplar wood sheets, I have experimented with different operations that produce different kinds of flexible beam-like strips.

Next, I will look into combining the different processing methods to create a more complex system where the different possibilities and limitations of the three methods can support each other. I also have to narrow the investigation down from a system that can ”do anything” to a more specific part of the site and program.

Generating architectural shapes and stepping out of my comfort zone – final thoughts about P3

For the final stage of the first part of this project, I have experimented further with combining different meshes and settings for the agents in Culebra to see what architectural shapes can be generated based on different criteria. I produced a series of 25 architectural shapes/pavillions, intuitively testing different settings to generate different architectural elements. After generating the pavillions, I zoomed in on them to identify different architectural elements/typologies that had emerged based on different settings.

My usual process when working with architectural projects is quite rational and controlled. Trying to let go of my own expectations for what the end result will be has been a challenge for me during this project. During my presentation, I got the comment that I from here on should try to take a step back to a more rational, controlled process and set of rules for the Culebra agents. Getting that comment was a big victory for me, as proof that I managed to step outside of my regulated and boxy comfort zone and just try something new based on intuition. I am very much looking forward to the next part of the project, since I hopefully will get a chance to keep working on finding the balance between controlled/rational/result-oriented and intuitive design processes.

Site and topography

This week, I have been working on finetuning the Culebra swarms while also experimenting more with generating meshes in Grasshopper using different raster images of the topography. 

After creating a simple script to detect the most dense areas from one of the swarm iterations from last time, I have chosen the southern tip of the island, Draget, to be my site. 

The work done this week sparked my interest in looking even more in detail in the different possible outcomes of using image samplers on different topographical data sources; more specifically, I am going to investigate the different outcomes between the heightmap raster image versus the ortho photo from Lantmäteriet. This investigation, in combination with seeing in how the swarming agents from Culebra can interact with both each other and the different topography meshes, is what I am planning on looking at during the coming weeks.

The Hivemind

My initial interest in participatory design led me to start working with multi agent systems. The idea that consensus emerges without anybody actually taking charge or leading the group felt like it might have an interesting analogous connection to questions of democracy (and I also found Grasshopper plugins that seemed fun to try), so I decided to go in this direction.

The agents are programmed to have several concurrent behaviors, the main ones being attraction and repulsion. After starting to play with the idea that the agents were in fact aliens out to colonize Malmön (and laughing out loud at my own silliness) I got the ideas that the repellants would be the existing housing on the island and the attractor points certain terrain conditions. Obviously, aliens want to keep their colonization efforts secret from the humans on the island, and they are here to gather data on the granite that is so abundant in Malmön… 

Moving on, first of all I want to see how I can take the concepts I’ve worked with so far from 2D to 3D. Furthermore, I’m also thinking about experimenting with a hierarchy within the swarm; the brief includes 5 ”camp leaders”, something that both works well with my hypothetical alien colony situation and could potentially generate interesting results depending on how the leaders and the swarm interact with each other.

Precedents, Posterization in Python and Participatory Processes

Without anything specific in mind, I started out by researching the camp typology in a broad sense, collecting examples spanning from military camps to inca ruins. The collection of precedents is therefore quite diverse, not (yet, at least) neatly categorized by any specific parameters. However, a few different patterns emerge, such as strict, square grid compositions or more rounded landscape excavations.

The terraced landscapes in Moray and Dalhalla in combination with Pablo’s Python script to modify the heightmap image file inspired me to experiment with programming a script that modifies the heightmap to create a posterized, lower resolution version of the image that in turn could generate a terraced landscape in Rhino. I am not yet sure whether this type of terraforming is what I want to work with moving forward in the project, but at least I had fun writing my first few lines of code.

At present, my area of interest for the camp project is related to participatory and/or emergent design, where the participants of the camp are the ones designing/building/influencing the camp in some way. Instead of ending up with a finished ”project” showing a final end result for what the camp will look like, it might be interesting to work towards a more speculative, ”simulated” result, showing a possible outcome of a process, perhaps happening over a longer period of time. An idea on how take this vague and overly ambitious idea forward is to analyze settlements that have emerged organically without architects to identify the rules and patterns of the configurations. I am also planning on looking more at the specifics of the site, as well as gathering more references on participatory and emergent design processes.