Manipulating the roofscape

After producing the axonometric development drawing , I used this as a snapshot to analyse how the code was generating spaces and controlling circulation. But most importantly to reflect on how the walls, beams and roof were working together through manipulation of the code. I started to alter the logic of the code to create a controlled circulation route through the spaces. By randomly deciding whether to shift a wall and creating an opening, or leave the wall untouched.

Final presentation.indd

Final presentation.indd

I then also explored how different input curves could create different spaces and variations by using the same script.

Final presentation.indd

Below is an example of one of the many unique generations that can be produced on the exact same curve. If used on different input curves I could create even more unique variations.

Final presentation.indd

I started to look at the roof form in more detail by considering how it could vary in different ways to affect the environment and experience of the space below. I would then use this to dictate what spaces could be used for. I considered how the spacing and arrangements could be altered to let through different amounts of light, or no light if you want to project video installations. They could even be used as acoustic buffers in tall spaces. Whilst I was exploring the variations of roof form and the transparency of the walls to shut off and expose views, I still wanted the roof form to appear as one cohesive system.

Final presentation.indd

Final presentation.indd


Rotation Variation

In the first assignment I brought some plans that showed a clear modular structure that had subtle varieties and explicit rhythm in its spatial configuration. With this in mind I aimed to replicate a simple element such as a rectangle or a triangle in different rotations but always in a modular fashion. 1-3

My initial experimentations developed into interesting meshes and rhythmic niches that were very useful for my project intentions. However, after the third or fourth variation I realised that these simple for loops were quite limited in their application for what I wanted.4-6

After shifting my attention to right-angled triangles I decided to make and external layer that would serve as the entrance/exit to my plan. Identical on all four sides, it showed some interesting configurations that could direct circulation and exhibition. On the inside I attempted to create a situation as close to random as possible while still keeping a fixed rhythm and relationship between the elements.6-9

Although I was held back somewhat by my limited Python skills, I found the result very interesting, especially considering these elements as small installation spaces with a lot of circulation between them; almost like a pavilion. For future endeavors, I plan to randomize the spatial configuration some more, as well as creating randomized scales of the same element, which could in turn give me some interesting Boolean differences and relationships with the site.


Going off at a tangent

During my precedent study of spatial configurations, I was particularly interested in how circulation defined the form and organisation of a building and how the building could be treated as a continuous space.

180915_Configuration Examples -

I became particularly interested in the second precedent study and how the continuous space of a building can be subdivided into a sequence of spaces. The subdivision creates different relationships between one another, but also a different relationship between each interior to the exterior of the building. I began by exploring how tangents could be generated along a curve in varying ways to define spaces in between them which either enclose or open.

Task 02_9 diagrams

I then started to evolve these 2D configurations into 3D, by randomly extruding different thicknesses of walls to different heights. To create circulation openings between spaces, or recesses within the walls.

Task 02_9 diagrams

Lastly I created an example of how I could integrate this configuration into the site. I plan to explore how the code could be used to map walls onto topography lines, key geometry or paths within the site to create a series of spaces which are linked to the outside.



Some lines, and some circles…

When looking at configurations of precedents, I found two aspects particularly interesting. One was the direct, linear spaces that appear as occupied pathways, and the other is the overlapping of simple geometries to create a dynamic form.

180915_Configuration Examples

I feel like the first one is a missed opportunity for some interest or excitement in locations where these paths meet. I began by working with a simple box boundary, dividing the boundary into points and connecting them. These then cross over each other, and I have added circles at the intersections.


By randomising these circles, cleaning up the overlap and forming paths out of the lines, I have created a configuration, which can then be applied to any boundary curve. In 3D, it starts to form something like this:


And finally, an example on site:

180921_site file